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Spurious Modes of the TLM-Condensed

Node Formulation
John Nielsen

Abstract–The TLM method is based on temporal and spatial
sampling of electromagnetic fields. As with the ND-TD method,
this results in dispersive effects and propagating spurious modes

that corrupt the field solution. The general dispersion relation
for the TLM condensed node is used to quantify the propaga-
tion attributes of these spurious modes.

I. INTRODUCTION

T HE TLM method, is a means of simulating the solution

to Maxwell’s equations in an arbitrary bounded problem

by modeling electrical properties of the bounded medium by

an equivalent LCRG electrical circuit [1]– [5]. The 3-D TLM

condensed node formulation was developed by P. Johns [6].

As with any numerical method that relies on spatial and time

sampling, the condensed node has undesired dispersion asso-

ciated with it. The dispersion characteristics of the condensed

node are generally superior in comparison to the leap-frog

FD-TD scheme developed by Yee [7] ancl the expanded

TLM node [4] given similar node densities. A derivation of

the dispersion equation for the condensed node, demonstrat-

ing this, is given in [8].

In addition to dispersion, spurious modes are generated in

spatially sampled schemes. Signal corruption resulting from

spurious modes in the FD–TD method was discussed by

Trefethen [9]. In this letter the propagating and evanescent

spurious modes of the condensed TLM node formulation are

derived and discussed. When the condensed node mesh is

applied to problems involving scattering or source structures

that have feature dimensions of several lattice spacings,

high-order spatial modes are generated. These modes suffer

significant dispersion effects as outlined in [81]. If the spatial

frequency of the mode is sufficiently high, it will propagate

as a spurious mode with an incorrect propagation constant

and in some cases with no loss. Spurious modes may have

positive or negative group velocities.

11. DISPERSION RELATION OF THE CONDENSED TLM

NODE

The TLM condensed node lattice is a cubic structure with

nodes placed at regular intervals of dimension “d.” The

interconnecting lines, joining adjacent nodes, are dispersion-

less transmission lines with a propagation constant denoted

by kO, The update time interval of the mesh is set equal to
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the time delay of a signal propagating from one node to the

next, through an interconnecting transmission line.

The general dispersion relation for the condensed node

mesh is based on application of Floquet’s theorem to an

infinite three-dimensional mesh. A plane wave solution is

assumed with component propagation constants of kX, k ~,

and kZ in the x, y, and z direction respectively. In its final

form, the dispersion relation for the condensed node is given

as [8]

det(l– TPS) = O, (1)

which is an implicit function of kO, kX, kY and kZ. I is a 12

by 12 identity matrix, T is given by

T = e-jkOdI.

S is the scattering matrix of the TLM condensed node given

in [6]. Finally P is a matrix containing the propagation

constants whose elements are zero except

, ,2= p~ ~ = ejk.vdp, ,

Pz,g = Pb,g = eJkZd

P – P6,10 = ejk’d3,11 -

P7,5 = P12,1 = e-jkyd

ps,d = pg ~ = e-jk.d

P – P11,3 = e-Jkxd.10.6 –

III. SPURIOUS SOLUTIONS TO THE DISPERSION EQUATION

The dispersion relation is used to determine the propaga-

tion characteristics of an arbitrary plane wave in an infinite

3-D mesh. Consider first the solution of kXd, kYd, and k, d

for a small value of kOd. The solution is a sphere with a

radius of approximately 2 . k. d. The factor of 2 is due to the

low frequency propagation velocity in the periodic TLM

mesh, which is half the velocity of the interconnecting trans-

mission lines [4]. There is no dispersion along the kX, k ~,

and kZ axes. However, along the diagonal, kXd = kYd =

k= d, the radius is slightly inflated, revealing some dispersion

[8]. As kOd increases, the bulges of the solution surface

around the diagonals grow proportionally larger.
Due to the spatial sampling imposed by the mesh along x,

y and z, the solution to the dispersion relation is periodic
alongthe/cxd,kYd, and kZd axis. That is, if kXd, kYd,

kZ d is a solution to the dispersion relation for a particular

105 1-8207/91/0800-0201$01 .00 @ 1991 IEEE



202 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL 1, NO. 8, AUGUST 1991

1

1

1 F..
-. .— -

1, I

o~

Fig. 1. Illustration of solution sphere satisfying the dkpserion
showing a body -centred-cubic structure.

relation

kOd then

kXd+ii”2~, ii= +1, *2,. ...

kYd+jj.2w, jj - *1, +2,. ...

kZd+kk”2n-, kk= &l, +2,7, .,

are also solutions. Consequently, the solution sphere centered

around kX d = kY d = kZ d = O is replicated in a cubic node

pattern with a spacing of 2 T. All these solution spheres do

not contribute to spurious modes but are merely a conse-

quence of spatial sampling.

In addition to the above solutions there is also a solution

sphere centered at kX d = kY d = kZ d = T. This represents

the spurious propagating mode solutions. As before, spurious

solution spheres exist at intervals of 2 m in k, d, kY d, and

kZ d, due to spatial sampling. The total solutions, assuming

kOd is small appears as a body -centred-cubic node structure

as is shown in Fig. 1.

Attributes of spurious modes are best exemplified by con-

sidering mode propagation in a rectangular waveguide mod-

eled by a TLM mesh. Assume an infinite homogeneous

rectangular waveguide in the z direction that is modeled by a

cubic condensed node mesh. The cross-section of the wave-

guide mesh model contains IVx nodes in the x direction and

Ny nodes in the y direction. The ith column of nodes is

located at x = (i + 1/2) d and the jth row is located at

Y = (j + 1/2) d. The waveguide walls are assumed to be

perfect conductors. The transverse propagation constants can

then be expressed as

kXd= -& n= O, l... Nx,

kYd= ~r, n= O, l... Ny, (2)

with the exception of modes n = m = O and n = Nx, in =

Ny, which result in trivial solutions. Using the dispersion

relation given in (1), kZ d can be evaluated for each mode.

The propagation characteristics of each mode falls into one of

four regions as outlined in Fig. 2. The first region for small

k.Yd and kY d is the “physical propagating modes. ” The

propagating constant, kZ d, for these modes is real and close
to the theoretical value of

kZd = J(2 “ kOd)2 - (kxd)2 - (k,d)’ . (3)
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Fig. 2. Mode regions for TLM mesh model of a rectangular waveguide.

Assuming an excitation frequency such that kOd is small

relative to m, the boundary of this region is approximately

circular, of a radius of 2 kO d. As kO d increases, the

boundary will bulge slightly around the diagonal kXd = kYd.

The adjacent region is denoted as the “physical evanescent

modes, ” which have a purely imaginary kZ d that increases

in magnitude with the modal index as expected in actual

waveguide modes. Near the physical mode cutoff boundary,

the imaginary part of kZ d follows (3) accurately provided

kO d is reasonably small.

The propagation constant for modes that lie along the

diagonal line given by

kXd + kYd = ~

have an negative infinite imaginary component that indicates

no propagation at all. Crossing this line such that

kXd+kYd>~,

the real part of kZ d jumps to m. The modes in this region

are denoted as the “spurious evanescent modes. ” In this

region, the magnitude of the imaginary component of kZ d

decreases as the mode index increases.

The boundary between the spurious evanescent and propa-

gating modes is a mirror image of the boundary separating

the physical propagating and evanescent modes and is located

approximately on the curve given by

2kOd= ~(r – kXd)2 + (m - kYd)2 . (4)

The spurious propagating modes have a propagation constant

of approximately

kZd= ~ ~ /2kOd– (m – kXd)2 - (T - kyd)2 , (5)

which is purely real indicating lossless propagation. Note the

constant offset factor of T. The upper sign in (5) denotes the

forward propagating spurious mode and the lower sign the

backward propagating mode.

Fig. 3 shows the real and imaginary parts of k= d as a

function of kXd for kXd = O to kXd = x, with k,d = kXd.

In this example, kO d is chosen to be 0.3. For small values of

kXd, kZd is real until the cutoff point at kXd = 0.42. In

Fig. 3(a), the theoretical solution of (3) is superimposed and

is indistinguishable from the curve given by the dispersion
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Fig.3. Plotofkzdas afunction ofkXrJwith kOd=().3and /cYcJ=kxd

(a) Real part. (b) Imaginary part.

relation, (l). At kXd = m/2, the real part of /czd jumps to a

value of T. At the cutoff point of the spurious mode, given

by

kXd= x – 0.42,

the spurious mode begins to propagate. The curves are shown

in Fig. 3(a) for the cases of forward and backward propaga-

tion.

The imaginary part of kZ d is shown in Fig. 3(b). When

kXd exceeds the cutoff point, the mode becomes evanescent.

It follows the theoretical curve, given by (3), reasonably

closely until kX d approaches m/2. Beyond the discontinuity,

the mode become spurious. At the spurious mode cutoff, the

imaginary part of kZ d becomes zero.
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