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Spurious Modes of the TLM-Condensed
Node Formulation

John Nielsen

Abstract—The TLM method is based on temporal and spatial
sampling of electromagnetic fields. As with the FD-TD method,
this results in dispersive effects and propagating spurious modes
that corrupt the field solution. The general dispersion relation
for the TLM condensed node is used to quantify the propaga-
tion attributes of these spurious modes.

I. INTRODUCTION

HE TLM method, is a means of simulating the solution

to Maxwell’s equations in an arbitrary bounded problem
by modeling electrical properties of the bounded medium by
an equivalent LCRG electrical circuit [1]-[5]. The 3-D TLM
condensed node formulation was developed by P. Johns [6].
As with any numerical method that relies on spatial and time
sampling, the condensed node has undesired dispersion asso-
ciated with it. The dispersion characteristics of the condensed
node are generally superior in comparison to the leap-frog
ED-TD scheme developed by Yee [7] and the expanded
TLM node [4] given similar node densities. A derivation of
the dispersion equation for the condensed node, demonstrat-
ing this, is given in [8]. '

In addition to dispersion, spurious modes are generated in
spatially sampled schemes. Signal corruption resulting from
spurious modes in the FD-TD method was discussed by
Trefethen [9]. In this letter the propagating and evanescent
spurious modes of the condensed TLM node formulation are
derived and discussed. When the condensed node mesh is
applied to problems involving scattering or source structures
that have feature dimensions of several lattice spacings,
high-order spatial modes are generated. These modes suffer
significant dispersion effects as outlined in [8]. If the spatial
frequency of the mode is sufficiently high, it will propagate
as a spurious mode with an incorrect propagation constant
and in some cases with no loss. Spurious modes may have
positive or negative group velocities.

II. DispersiON RELATION OF THE CoNDENSED TLM
NobEe

The TLM condensed node lattice is a cubic structure with
nodes placed at regular intervals of dimension ‘‘d.”” The
interconnecting lines, joining adjacent nodes, are dispersion-
less transmission lines with a propagation constant denoted
by k,. The update time interval of the mesh is set equal to
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the time delay of a signal propagating from one node to the
next, through an interconnecting transmission line.

The general dispersion relation for the condensed node
mesh is based on application of Floquet’s theorem to an
infinite three-dimensional mesh. A plane wave solution is
assumed with component propagation constants of k., k,
and k_ in the x, y, and z direction respectively. In its final
form, the dispersion relation for the condensed node is given
as [8]

det (I — TPS) =0, (1)
which is an implicit function of k,, k., k,and k. Iisa 12
by 12 identity matrix, 7 is given by

T = e k7],

S is the scattering matrix of the TLM condensed node given
in [6]. Finally P is a matrix containing the propagation
constants whose elements are zero except

III. SpuRrIOUS SOLUTIONS TO THE DISPERSION EQUATION

The dispersion relation is used to determine the propaga-
tion characteristics of an arbitrary plane wave in an infinite
3-D mesh. Consider first the solution of k,d, k ,d, and k.d
for a small value of k,d. The solution is a sphere with a
radius of approximately 2 - k d. The factor of 2 is due to the
low frequency propagation velocity in the periodic TLM
mesh, which is half the velocity of the interconnecting trans-
mission lines [4]. There is no dispersion along the &k, £,
and k_ axes. However, along the diagonal, k,.d = k yd=
k .d, the radius is slightly inflated, revealing some dispersion
[8]. As k,d increases, the bulges of the solution surface
around the diagonals grow proportionally larger.

Due to the spatial sampling imposed by the mesh along x,
vy and z, the solution to the dispersion relation is periodic
along the k,d, k,d, and k,d axis. That is, if k.d, k,d,
k.d is a solution to the dispersion relation for a particular
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Fig. 1. Illustration of solution sphere satisfying the dispserion relation
showing a body-centred-cubic structure.
k,d then
k. d+ii-2r, = %1, £2,+--,
kyd+jj-2m,  jj= %1, 42,
k,d+kk-2m, kk= %1, +2,---,

are also solutions. Consequently, the solution sphere centered
around k,d = k,d = k_d = 0 is replicated in a cubic node
pattern with a spacing of 2 7. All these solution spheres do
not contribute to spurious modes but are merely a conse-
quence of spatial sampling.

In addition to the above solutions there is also a solution
sphere centered at k,.d = k,d = k,d = «. This represents
the spurious propagating mode solutions. As before, spurious
solution spheres exist at intervals of 27 in k .d, k,d, and
k.d, due to spatial sampling. The total solutions, assuming
k,d is small appears as a body-centred-cubic node structure
as is shown in Fig. 1. ‘

Attributes of spurious-modes are best exemplified by con-
sidering mode propagation in a rectangular waveguide mod-
eled by a TLM mesh. Assume an infinite homogeneous
rectangular waveguide in the z direction that is modeled by a
cubic condensed node mesh. The cross-section of the wave-
guide mesh model contains Nx nodes in the x direction and
Ny nodes in the y direction. The ith column of nodes is
located at x = (i + 1/2)d and the jth row is located at
Y =(Jj+ 1/2)d. The waveguide walls are assumed to be
perfect conductors. The transverse propagation constants can
then be expressed as

n

k. d=—m, n=0,1--- Nx,
Nx
m
kyd= -]\ET, n=0,1---Ny, (2)

with the exception of modes n = m = 0and n = Nx, m =
Ny, which result in trivial solutions. Using the dispersion
relation given in (1), kK d can be evaluated for each mode.
The propagation characteristics of each mode falls into one of
four regions as outlined in Fig. 2. The first region for small
k.d and k,d is the “‘physical propagating modes.”” The
propagating constant, k_d, for these modes is real and close
to the theoretical value of

kod =2 k,d) — (k,d) - (k,df .

(3)
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Fig. 2. Mode regions for TLM mesh model of a rectangular waveguide.

Assuming an excitation frequency such that k d is small
relative to 7, the boundary of this region is approximately
circular, of a radius of 2 k,d. As k,d increases, the
boundary will bulge slightly around the diagonal k,d = k yd.

The adjacent region is denoted as the ““physical evanescent
modes,”” which have a purely imaginary k,d that increases
in magnitude with the modal index as expected in actual
waveguide modes. Near the physical mode cutoff boundary,
the imaginary part of k_d follows (3) accurately provided
k,d is reasonably small.

The propagation constant for modes that lie along the
diagonal line given by

kod+k,d=mr

have an negative infinite imaginary component that indicates
no propagation at all. Crossing this line such that

k.d+ k,d>m,

the real part of k_d jumps to w. The modes in this region
are denoted as the ‘‘spurious evanescent modes.’’ In this
region, the magnitude of the imaginary component of k.d
decreases as the mode index increases.

The boundary between the spurious evanescent and propa-
gating modes is a mirror image of the boundary separating
the physical propagating and evanescent modes and is located
approximately on the curve given by

2k,d = (- kd)* + (v - k,d)". (4)

The spurious propagating modes have a propagation constant
of approximately

ked~ 7 |2k,d — (v - k)" ~ (x— k,d) . (5)

which is purely real indicating lossless propagation. Note the
constant offset factor of 7. The upper sign in (5) denotes the
forward propagating spurious mode and the lower sign the
backward propagating mode.

Fig. 3 shows the real and imaginary parts of k.d as a
function of £, d for k. d = Oto k,d = =, with k ,d = kd.
In this example, & ,d is chosen to be 0.3. For small values of
k.d, k,d is real until the cutoff point at k, d = 0.42. In
Fig. 3(a), the theoretical solution of (3) is superimposed and
is indistinguishable from the curve given by the dispersion
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4 relation, (1). At k,d = 7 /2, the real part of &k _d jumps to a

f°’::£ﬂo’fj'§’,’:§§§”9 — value of 7. At the cutoff point of the spurious mode, given
, by ‘
kzd 3 , e et ked=m - 042,

real

~ the spurious mode begins to propagate. The curves are shown
/‘ in Fig. 3(a) for the cases of forward and backward propaga-

: tion.
C’Zgﬁ,ﬁig",ﬁggg‘“’g The imaginary part of k,d is shown in Fig. 3(b). When

k.. d exceeds the cutoff point, the mode becomes evanescent.
physical , It follows the theoretical curve, given by (3), reasonably

Tr / PFOEE’%?HQ ; closely until & .d approaches 7 /2. Beyond the discontinuity,
‘ the mode become spurious. At the spurlous mode cutoif the

\ imaginary part of k,d becomes zero.
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